PERBANDINGAN OPTIMALISASI HASIL KLASIFIKASI MENGGUNAKAN PSO PADA ALGORITMA C.45 DAN CART (STUDIKASUS PREDIKSI PENYAKIT STROKE)

Muhammad Guschoyin, Handoyo Widi Nugroho

Abstract


This study aims to compare the performance of four different classification models, namely CART, Decision Tree C4.5, and their respective versions with Particle Swarm Optimization (PSO), in the context of classification. Evaluation is conducted using four main performance metrics: accuracy, precision, recall, and Area Under Curve (AUC). The data are tested using these four models, and the results are compared to identify the most effective model in predicting the target class. The results indicate that the Decision Tree C4.5 model, especially when enhanced with PSO, consistently outperforms the CART model in terms of accuracy, precision, recall, and AUC.

Keywords


Classification, CART, Decision Tree C4.5, Particle Swarm Optimization (PSO), Accuracy, Precision, Recall, Area Under Curve (AUC).

Full Text:

PDF

References


K. L. Kohsasih and Z. Situmorang, “Comparative Analysis of C4.5 and Naïve Bayes Algorithms in Predicting Cerebrovascular Disease,” J. Inform., vol. 9, no. 1, pp. 13–17, 2022.

E. R. Pambudi, Sriyanto, and Firmansyah, “Teknika 16 (02): 221-226,” Ijccs, vol. 16, No.02, no. x, pp. 221–226, 2022.

A. F. Riany and G. Testiana, “Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes,” J. SAINTEKOM, vol. 13, no. 1, pp. 42–54, 2023, doi: 10.33020/saintekom.v13i1.352.

Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” SINTECH (Science Inf. Technol. J., vol. 5, no. 2, pp. 191–197, 2022, doi: 10.31598/sintechjournal.v5i2.1222.

Y. N. Paramitha, A. Nuryaman, A. Faisol, E. Setiawan, and D. E. Nurvazly, “Klasifikasi Penyakit Stroke Menggunakan Metode Naïve Bayes,” J. Siger Mat., vol. 04, no. 01, pp. 11–16, 2023.

R. S. Rohman, R. A. Saputra, and D. A. Firmansaha, “Komparasi Algoritma C4.5 Berbasis PSO Dan GA Untuk Diagnosa Penyakit Stroke,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 1, p. 155, 2020, doi: 10.24114/cess.v5i1.15225.

Suryani, D. Rahmadani, A. A. Muzafar, A. Hamid, R. Annisa, and Mustakim, “Analisis Perbandingan Algoritma C4.5 dan CART untuk Klasifikasi Penyakit Stroke,” SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., pp. 197–206, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas

F. N. Ikhromr, I. Sugiyarto, U. Faddillah, and B. Sudarsono, “Implementasi Data Mining Untuk Memprediksi Penyakit Diabetes Menggunakan Algoritma Naives Bayes dan K-Nearest Neighbor,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 6, no. 1, pp. 416–428, 2023.

F. Meila Azzahra Sofyan, A. Putri Riyandoro, D. Fitriani Maulana, J. Haerul Jaman, S. Informasi, and U. Singaperbangsa Karawang, “Penerapan Data Mining dengan Algoritma C5.0 Untuk Prediksi Penyakit Stroke,” Juli, vol. 6, pp. 619–625, 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsk/index

N. A. Iskandar, I. Ernawati, and Y. Widiastiwi, “Klasifikasi Diagnosis Penyakit Stroke Dengan Menggunakan Metode Random Forest,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 432–441, 2022, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2190

K. Akmal, A. Faqih, and F. Dikananda, “Perbandingan Metode Algoritma Naïve Bayes Dan K-Nearest Neighbors Untuk Klasifikasi Penyakit Stroke,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 470–477, 2023, doi: 10.36040/jati.v7i1.6367.




DOI: https://doi.org/10.30873/ji.v24i1.4006


 Jurnal Informatika is abstracting and indexing in the following databases:

 

 

 


JURNAL INFORMATIKA

 

Dikelola Oleh: Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM)

Diterbitkan Oleh: Institut Informatika dan Bisnis Darmajaya
Alamat: Jl. Z.A. Pagar Alam No. 93 Gedong Meneng, Bandar Lampung Lampung
Website: jurnal.darmajaya.ac.id

Email: lp4mjurin@gmail.com


View Jurnal Informatika StatCounter

Creative Commons License

Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.