PENERAPAN DATA MINING JUMLAH PENJUALAN SEPEDA MOTOR MENGGUNAKAN METODE K- MEANS CLUSTERING (Studi Kasus : PT. Tunas Dwipa Matra Way Kanan)

Fitri Anggraini, Rustam Rustam, Sidik Rahmatullah, Supriyanto Supriyanto

Abstract


With the ever-expanding product spectrum of motorcycles, as we all know, motorcycles are a popular form of public transportation because of their practicality. The motorcycle business had to develop further and adopt new technologies. The motorcycle market in Indonesia is currently flooded with motorcycle companies, including Honda, Yamaha, Suzuki and Kawasaki, which are constantly competing to win consumer interest in buying motorcycle products. It is difficult for staff to set sales forecasts because of the volume of motorcycle sales data. In processing motorcycle sales data, it is necessary to carry out a data grouping technique. Using the K-Means method will divide and classify data into predetermined clusters by grouping based on certain classes. A data that has the closest similarity will be in the same cluster. Processing motorcycle sales data with this method can determine the amount of sales. The tools used in this research are Google Colaboratory. In this study there are 3 clusters. The results of this study are cluster 1 (many) there are 4 data in data 1, 2, 3 and 4, in cluster 2 (moderate) there are 3 data in data 5, 6 and 7, and cluster 3 (less) there are 5 data in data 8, 9, 10, 11 and 12. In the application of data mining using google colaboratory there are 3 colors namely yellow (cluster 1) there are 4 data, purple (cluster 2) there are 3 data and blue (cluster 3) there are 5 data. So it can be concluded that manual calculations using the k-means clustering method and the application of data mining using the Google colaboratory are relevant.

Keywords


Motorcycles, Data Mining, K-Means Clustering, Google Colaboratory

Full Text:

PDF

References


D. Tampi and A. S. S. J. S. B. Sumarauw, “Pengaruh Kualitas Produk, Harga, Dan Daya Tarik Iklan Terhadap Keputusan Pembelian Sepeda Motor Honda Scoopy Pada Pt. Daya Adicipta Wisesa,” J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 4, no. 1, pp. 990–999, 2016.

A. Afandi, D. Nurdianah, P. C. Rejo, N. Bayes, and K. A. Dominan, “Naive Bayes Method and C4 . 5 in Classification of Birth Data,” vol. 16, no. 4, pp. 435–446, 2022.

A. I. Waspah et al., “Expectation Maximization Algorithm Memprediksi Penjualan Susu Murni Pada Pt . Sewu Primatama Indonesia Lampung,” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 7, no. 1, pp. 27–38, 2022.

S. Mintoro and A. Afandi, “Implementasi Algoritma K-Means Dan Algoritma Apriori Optimasi Kinerja Ecu (Study Kasus Mobil Avanza Dan Xenia),” J. Inf. dan Komput., vol. 9, no. 2, pp. 81–88, 2021, doi: 10.35959/jik.v9i2.235.

M. Nishom and M. Y. Fathoni, “Implementasi Pendekatan Rule-Of-Thumb untuk Optimasi Algoritma K-Means Clustering,” J. Inform. J. Pengemb. IT, vol. 3, no. 2, pp. 237–241, 2018, doi: 10.30591/jpit.v3i2.909.

N. Nyoman and E. Smrti, “Otomatisasi Klasifikasi Buku Perpustakaan Dengan Menggabungkan Metode K-Nn Dengan K-Medoids,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 4, no. 1, pp. 201–214, 2015.

A. S. Devi, I. K. G. D. Putra, and I. M. Sukarsa, “Implementasi Metode Clustering DBSCAN pada Proses Pengambilan Keputusan,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 6, no. 3, p. 185, 2015, doi: 10.24843/lkjiti.2015.v06.i03.p05.

R. Muliono and Z. Sembiring, “DATA MINING CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS UNTUK KLASTERISASI TINGKAT,” vol. 4, no. 2, pp. 272–279, 2019.

R. Mauliadi, “Data Mining Menggunakan Algoritma K-Means Clustering dalam Analisis Tingkat Potongan Harga Terhadap Harga Jual Sepeda Motor Honda,” J. Inform. Ekon. Bisnis, vol. 4, pp. 7–9, 2022, doi: 10.37034/infeb.v4i4.156.

R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 11, no. 1, p. 32, 2020, doi: 10.24843/lkjiti.2020.v11.i01.p04.

A. Muni, “Analisis Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Penjualan Sepeda Motor Studi Kasus PT. Alfa Scorpii,” Juti Unisi, vol. 4, no. 1, pp. 1–8, 2020, doi: 10.32520/juti.v4i1.1087.

J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.

Y. Hapsari et al., “Analisis Data Penjualan Pasca COVID-19 Menggunakan Algoritma K-Means,” vol. 7, no. 2, pp. 62–66, 2022.

M. Benri, H. Metisen, and S. Latipa, “Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila,” J. Media Infotama, vol. 11, no. 2, pp. 110–118, 2015, [Online]. Available: https://core.ac.uk/download/pdf/287160954.pdf

R. G. Guntara, “Visualisasi Data Laporan Penjualan Toko Online Melalui Pendekatan Data Science Menggunakan Google Colab,” vol. 2, no. 6, pp. 2091–2100, 2023.




DOI: https://doi.org/10.30873/ji.v24i1.3685

Data citation

-




 Jurnal Informatika is abstracting and indexing in the following databases:

 

 

 


JURNAL INFORMATIKA

 

Dikelola Oleh: Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM)

Diterbitkan Oleh: Institut Informatika dan Bisnis Darmajaya
Alamat: Jl. Z.A. Pagar Alam No. 93 Gedong Meneng, Bandar Lampung Lampung
Website: jurnal.darmajaya.ac.id

Email: lp4mjurin@gmail.com


View Jurnal Informatika StatCounter

Creative Commons License

Jurnal Informatika is licensed under a Creative Commons Attribution 4.0 International License.